a2 United States Patent

US009092285B2

(10) Patent No.: US 9,092,285 B2

Inglett et al. 45) Date of Patent: *Jul. 28, 2015
(54) METHOD OF ENTROPY DISTRIBUTION ON (56) References Cited
A PARALLEL COMPUTER
U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines 6.611.869 Bl 29003 Eschelbeck f al
. 611, schelbeck et al.
Corporation, Armonk, NY (US) 6,628,786 Bl 9/2003 Dole
7,362,772 Bl 4/2008 Alfieri et al.
(72) Inventors: Todd A. Inglett, Rochester, MN (US); 7.571,199 Bl 8/2009 Field et al.
Andrew T. Tauferner, Rochester, MN 7,930,332 B2* 4/2011 Acaretal.ccoevni.. 708/250
(us) 8,019,802 B2 9/2011 Rose et al.
8,250,127 B2* 82012 Kelly ..ccoooevvvvvecivin 708/250
(73) Assignee: International Business Machines %882;8255%%8 ﬁ} lggggg %mer ctal.
. emp
Corporation, Armonk, NY (US) 2006/0062384 Al 3/2006 Dondeti
2008/0256151 Al* 10/2008 Acaretal. ... 708/250
(*) Notice: Subject to any disclaimer, the term of this 2008/0263117 A1 10/2008 Rose et al.
patent is extended or adjusted under 35 %818; 8%2;‘5‘2 ﬁ} * 41‘;%8}8 gﬁl_ly ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 713/150
1s0n
US.C. 154(b) by 138 days. 2010/0306296 Al 122010 Inglettetal.
This patent is subject to a terminal dis- 2011/0047545 Al 2/2011 Ellison et al.
claimer 2014/0040335 Al* 2/2014 Inglettetal. 708/250
: 2014/0040336 Al* 2/2014 Inglettetal. 708/250
(21) Appl. No.: 13/778,715 OTHER PUBLICATIONS
22) Filed: Feb. 27, 2013 U.S. Appl. No. 13/562,486, entitled Method of Entropy Distribution
(22)) pp Py
on a Parallel Computer, filed Jul. 31, 2012.
(65) Prior Publication Data
% o .
US 2014/0040336 A1 Feb. 6, 2014 cited by examiner
Related U.S. Application Data Primary Examiner — David H Malzahn
(63) Continuation of application No. 13/562,486, filed on ~ (74) Attorney, Agent, or Firm — Patterson & Sheridan, LLP
Jul. 31, 2012.
57 ABSTRACT
(51) Int.CL Method for performing an operation, the operation including,
GOGF 7/58 (2006.01) responsive to receiving a file system request at a file system,
. Ul retrieving a first entro 00l element trom the file system,
(52) U.s.l ieving a fi py pool el from the file sy
CPC v GO6F 7/582 (2013.01); GOGF 7/588 and inserting, at the file system, the first entropy pool element
: nto a network packet sent from the file system responsive to
(2013.01) 4 k pack from the file sy ponsi
(58) Field of Classification Search the file system request.

None
See application file for complete search history.

140

—
FILE SERVER 101
135 136
ENTROPY COLLECTION
MECHANISM
120A 136
ENTROPY POOL
103 -
!1 36 !‘I 38

E1 37 !1 38

7 Claims, 6 Drawing Sheets

COMPUTE NODE 110

ENTROPY GENERATION
MECHANISM 138
A 136

FILE SERVER 102
138135
ENTROPY COLLECTION) ;
MECHANISM —
128
ENTROPY POOL
10
B

!

ENTROPY POOL
22

ENTROPY DISTRIBUTION
MECHANISM 123A

RANDOM NUMBER
GENERATOR 124A

COMPUTE NODE 111

ENTROPY GENERATION
MECHANISM 13
218

@

ENTROPY POOL
ENTROPY DISTRIBUTION
MECHANISM 1238
RANDOM NUMBER
GENERATOR 1248

:

U.S. Patent Jul. 28, 2015 Sheet 1 of 6 US 9,092,285 B2

140
—
FILE SERVER 101 135 COMPUTE NODE 110
136
ENTROPY COLLECTION ENTROPY GENERATION
MECHANISM C 136 ME%';'QN'SM 136 138
120A 136 - L- — | [
~ ENTROPY POOL ‘ i
ENTROPY POOL 122A
! 103 - ENTROPY DISTRIBUTION
136 138 MECHANISM 123A
[
r
‘ RANDOM NUMBER
;r GENERATOR 124A
y M37 M38
FILE SERVER 102
139438 COMPUTE NODE 111
E,“E'EE&\ZTS%OLLECT'ON ,—J—i ENTROPY GENERATION
- 1138 MECHANISM 138
1208 121B /
ENTROPY POOL —ENTROPYPOOL g
! 104 129B
138 ENTROPY DISTRIBUTION
MECHANISM 123B
[
r
RANDOM NUMBER
GENERATOR 124B

FIG. 1

U.S. Patent Jul. 28, 2015 Sheet 2 of 6 US 9,092,285 B2
200
- /o
203 20] 209A
FRONT-END FILE
NODES SERVERS -
™ 208
—
205 - |
et [T oAl T T T iz |
NETWORK H:(LOGAL /0 TREENETWORK —7 ||
I | |
oz 201A || 212 || 218 212¢ :
SUBGISTEN |l w0 || CNODE || CNODE |***| CNODE |||
|| NoDE 0 1 (N1) ||
Y | [s e -l
= e =2
i I_ 2138~ 2153—I
| | Hz(LOCAL 0 TREE NETWORK |—1 | |
22] [|
MEMORY (| 21][21 [2n2E 2F |
x Fi 0 || CNODE || CNODE |***| CNODE || |
AL 0 1 01|
T e e P
>
HC [2148 |
| | |r CooameN 2 E@l |
| —‘ | H:(LOCAL IO TREENETWORK F—7 | |
2 | | I | |
prollit T antc |[2126 | [2t2n 22 |
NETWORK |1 o || CNODE || CNODE || CNODE |||
|| NoDE 0 1 (1) ||
o e e P
HC |_ N—214C N

U.S. Patent Jul. 28, 2015 Sheet 3 of 6 US 9,092,285 B2

301

302F /

NN 302D

VR S - 2

N \ N N 9

1 R

1 :
N X _
' i
I

T
302E

FIG. 3

U.S. Patent Jul. 28, 2015 Sheet 4 of 6 US 9,092,285 B2

211
401A 401B
PROCESSOR CORE A PROGESSOR CORE B
AR 406A IAR 4068
PN
L 2 E
S~
413 402
APPLICATION DATA
¢ 414
T 414
= i
A ENTROPY FILE CACHE
GENERATION
MECHANISM
415
STACK
411
0S IMAGE
403 404
CONTROL IF EXTERNAL DATA INTERFACE

L 15 1B
\ J

LOCAL HARDWARE ~ LOCAL /0

CONTROL NETWORK TREEWORK TORUS NETWORK

NETWORK POINT-TO-POINT LINKS

FIG. 4

U.S. Patent Jul. 28, 2015 Sheet 5 of 6 US 9,092,285 B2

500

Y

COLLECT ENTROPY DATA AT FILE SYSTEM ~ 510

Y
INSERT ENTROPY POOL ELEMENT IN NETWORK PACKET | —~ 220

Y
SEND NETWORK PACKET TO COMPUTE NODE ~ 530

Y
EXTRACT ENTROPY POOL ELEMENT AT COMPUTE NODE —~— 940

Y
ADD ENTROPY POOL ELEMENT TO ENTROPY POOL ~— 550

END

FIG.5

U.S. Patent Jul. 28, 2015 Sheet 6 of 6 US 9,092,285 B2

600

START STEP 520

Y

INSERT ENTROPY POOL ELEMENT IN NETWORK PACKET |- 610
PADDING FIELDS USED FOR DATA ALIGNMENT

Y

INSERT ENTROPY POOL ELEMENT IN UNUSED NETWORK | 620
PACKET FIELDS

Y

APPEND ENTROPY POOL ELEMENT TO SPECIFIED 630
LOCATION OF NETWORK PACKET

Y

END STEP 520

FIG. 6

US 9,092,285 B2

1
METHOD OF ENTROPY DISTRIBUTION ON
A PARALLEL COMPUTER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of co-pending U.S.
patent application Ser. No. 13/562,486, filed Jul. 31, 2012.
The aforementioned related patent application is herein
incorporated by reference in its entirety.

BACKGROUND

Embodiments disclosed herein relate to distributing
entropy from a file system to a parallel computing system.

High quality random numbers are essential for many
aspects of computer systems, most notably in the area of
security. However, computer systems have a difficult time
generating high quality random numbers, i.e., numeric
sequences that are close to being truly random. There are
many algorithms that generate random numbers, but they
typically generate the same sequence of numbers, thus suf-
fering from predictability.

SUMMARY

Embodiments disclosed herein provide a method, system,
and computer program product for performing an operation,
the operation including, responsive to receiving a file system
request at a file system, retrieving a first entropy pool element
from the file system, and inserting, at the file system, the first
entropy pool element into a network packet sent from the file
system responsive to the file system request.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited aspects are
attained and can be understood in detail, a more particular
description of embodiments of the disclosure, briefly summa-
rized above, may be had by reference to the appended draw-
ings.

It is to be noted, however, that the appended drawings
illustrate only typical embodiments of this disclosure and are
therefore not to be considered limiting of its scope, for the
disclosure may admit to other equally effective embodiments.

FIG. 1 is a schematic illustrating techniques for distribut-
ing entropy pool elements on a massively parallel computing
system, according to one embodiment disclosed herein.

FIG. 2 is a block diagram of components of a massively
parallel computer system, according to one embodiment dis-
closed herein.

FIG. 3 is a conceptual illustration of a three-dimensional
torus network of the system, according to one embodiment
disclosed herein.

FIG. 4 is a diagram of an I/O node of the system, according
to one embodiment disclosed herein.

FIG. 5 is a flow chart illustrating a method of distributing
entropy pool elements on a parallel computing system,
according to one embodiment disclosed herein.

FIG. 6 is a flow chart illustrating a method for inserting
pool elements into a network packet, according to one
embodiment disclosed herein.

DETAILED DESCRIPTION

A massively parallel computing system, such as Blue
Gene® by International Business Machines®, is usually con-

10

15

20

25

30

35

40

45

50

55

60

65

2

nected with a large external file system. The massively par-
allel system sufters from a lack of entropy pool elements, yet
the large external file system has a high degree of entropy pool
elements by the nature of the mechanical disk subsystem
under its control. A large quantity of network communication
already exists between these systems. Embodiments dis-
closed herein supplement this network communication by
providing entropy pool elements as a portion of each network
packet sent from the file system with entropy pool elements to
the 1/O (and in turn, compute) nodes without entropy pool
elements. Embodiments disclosed herein may provide
entropy pool elements by including the entropy pool elements
in padding fields that are normally present for data alignment
in the communication protocols used by these parallel sys-
tems. Additionally, the entropy pool elements may be
included in unused fields in the communication protocols
used by these parallel systems. If such padded or unused
fields do not exist, the entropy pool elements may still be
appended to each packet such that considerably less overhead
than would be required if using full network packets dedi-
cated for distributing entropy pool elements.

In the following, reference is made to embodiments of the
disclosure. However, it should be understood that the disclo-
sure is not limited to specific described embodiments.
Instead, any combination of the following features and ele-
ments, whether related to different embodiments or not, is
contemplated to implement and practice the disclosure. Fur-
thermore, although embodiments of the disclosure may
achieve advantages over other possible solutions and/or over
the prior art, whether or not a particular advantage is achieved
by a given embodiment is not limiting ofthe disclosure. Thus,
the following aspects, features, embodiments and advantages
are merely illustrative and are not considered elements or
limitations of the appended claims except where explicitly
recited in a claim(s). Likewise, reference to “the invention”
shall not be construed as a generalization of any inventive
subject matter disclosed herein and shall not be considered to
be an element or limitation of the appended claims except
where explicitly recited in a claim(s).

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present disclosure may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.

US 9,092,285 B2

3

In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present disclosure are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for

10

15

20

25

30

35

40

45

50

55

60

65

4

implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

An entropy property, as used herein, refers to the ability of
arandom number generator to provide an equal probability of
outputting each individual value of a set of predefined values
that the random number generator is configured to output. To
improve the entropy property of a random number generator,
an I/O node or a compute node may add entropy pool ele-
ments to its entropy pool as a way to generate differing
sequences of random numbers. In one embodiment, an
entropy pool includes a set of one or more entropy pool
elements. The set of entropy pool elements may be used as
input to a random number generator in order to compute a
random number. An entropy pool element generally provides
an arbitrary length sequence of bits.

Some computing systems do not have a good source of
entropy from which to create entropy pool elements. Instead,
a computing system may rely on the seemingly random
behavior of a human typing on a keyboard or interacting with
a mouse to generate entropy pool elements. Other techniques
involve the use of time intervals between interrupts to add
entropy pool elements, although this is frequently not useful
due to the regularity of these intervals and the ability of
outside forces to manipulate these intervals. As a result, com-
puting systems with limited external or user inputs, such as
embedded systems or massively parallel computers, may
have a particularly hard time adding entropy pool elements to
the system.

FIG. 1 is a schematic diagram 100 illustrating techniques
for distributing entropy pool elements on a massively parallel
computing system, according to one embodiment disclosed
herein. The schematic diagram 100 is a simplified version of
the design and layout of a massively parallel computing sys-
tem. As shown, the schematic 100 includes file servers 101
and 102. As shown, the file servers 101 and 102 each include
an entropy collection mechanism 120A and 120B, respec-
tively. Entropy collection mechanisms 120A-B are generally
configured to retrieve, store, and transmit entropy pool ele-
ments. In some embodiments, the entropy collection mecha-
nisms 120A-B store entropy pool elements in entropy pools
103 and 104, respectively. As shown, entropy pool 103 con-
tains entropy pool elements 136 and 138, while entropy pool
103 contains entropy pool element 138. In some embodi-
ments, the entropy pool elements may be shared between file
servers 101 and 102 through communication messages sent
between the file system, such as the General Parallel File
System® (GPFS®), a high-performance shared-disk clus-
tered file system developed by IBM. Generally, the entropy
pool elements are gathered by the entropy collection mecha-
nisms 120A-B using accesses to the disk subsystems in the
file servers 101 and 102. For example, when a read request is
received by the file server 101, it may access a particular
location on the disk subsystem, the disk and the location each
having their own unique identifying information. For
example, a disk may have sectors, cylinders, platters, and
zones, each element with its own unique identifying informa-
tion. In some embodiments, the unique identifiers may be
selected as entropy pool elements, or the entropy collection
mechanism 120A may use the unique identifiers as input into
an entropy pool element generation algorithm, which may
output entropy pool elements, such as entropy pool element
136.

As shown, the schematic 100 also includes two compute
nodes 110 and 111, each having an entropy generation
mechanism 121A and 121B, respectively. In some embodi-
ments, the compute nodes 110 and 111 may be I/O nodes of a
larger, more complex parallel computer as depicted by system

US 9,092,285 B2

5

200, described in greater detail with reference to FIG. 2.
Residing inside the entropy generation mechanisms 121A-B
are entropy pools 122A and 122B, respectively, and entropy
distribution mechanisms 123A and 123B. As shown, the
entropy generation mechanisms 121A-B communicate with
random number generators 124A and 124B, respectively. For
example, the entropy generation mechanisms 121A-B may
store entropy pool elements in entropy pools 122A-B, which
are sent to random number generators 124A-B by entropy
distribution mechanisms 124A-B. The file servers and I/O
nodes communicate via a network 140. For example, an I/O
node may send a request to the file server 101 for a file. In
response, the file server 101 may generate a sequence of one
or more packets (e.g., packet 135) to be sent to the destination
1/0 node. For example, the 1/0 node 110 or the /O node 111
may be the destination /O node, but any /O node in the
parallel computing system may be the destination I/O node.
The entropy collection mechanism 120A may append the
entropy pool element 136 to the network packet 135 prior to
leaving the file server 101, where it is sent via the network 140
to its destination /O node. In some embodiments, the entropy
collection mechanisms 120A-B may append entropy pool
elements retrieved from the entropy pools 103 and 104,
respectively. Alternatively, the entropy pool elements may be
appended into network packets without having been stored in
the entropy pools 103-104. Although shown as being
appended to one end of the network packet 135, the position-
ing is for illustrative purposes only, as the entropy pool ele-
ments 136 may be placed at any position in the network
packet. While traversing the network 140, the network packet
135, including entropy pool element 136, may pass through
the 1/O nodes 110 and 111, which may extract the entropy
pool element 136 from the network packet 135. As shown, the
entropy pool 121A stores entropy pool element 136, which it
extracted from the network packet 135.

File server 102 is shown generating a network packet 139,
which may be generated, e.g., in response to a resource
request from the I/O node 111. As shown, the entropy pool
104 of entropy collection mechanism 120B contains the
entropy pool element 138, which may be appended to the
network packet 139. While traversing the network, the
entropy pool element 138 may be extracted from the network
packet 139 by both I/O node 110 and /O node 111, as the
entropy pool element 138 is shown as residing in the respec-
tive entropy pools 122A-B. The entropy pool element 138
also resides in the entropy pool 103 of the file server 101. In
some embodiments, the file server 102 may append the
entropy pool element 138 to a network packet 137 sent to the
file server 101. In some embodiments, the file server 102 may
be a metadata server, and the file server 101 may store files,
and communication between the two servers is necessary to
fulfill file server requests. Appending entropy pool element
138 to the network packet 137 increases the amount of
entropy pool elements stored throughout the file servers,
which may enhance the quality of entropy pool elements sent
to the I/O nodes.

FIG. 2 is a block diagram of components of a massively
parallel computer system 200, according to one embodiment
disclosed herein. Illustratively, computer system 200 shows
the high-level architecture of an IBM Blue Gene® computer
system, it being understood that other parallel computer sys-
tems could be used, and the description of a preferred
embodiment herein is not intended to limit the present dis-
closure.

As shown, computer system 200 includes a compute core
201 having a number of compute nodes arranged in a regular
array or matrix, which perform the useful work performed by

10

15

20

25

30

35

40

45

50

55

60

65

6

system 200. The operation of computer system 200, including
compute core 201, may be controlled by control subsystem
202. Various additional processors in front-end nodes 203
may perform auxiliary data processing functions, and file
servers 204 provide an interface to data storage devices such
as disk based storage 209A, 209B or other I/O (not shown).
Functional network 205 provides the primary data commu-
nication path among compute core 201 and other system
components. For example, data stored in storage devices
attached to file servers 204 is loaded and stored to other
system components through functional network 205.

Also as shown, compute core 201 includes I/O nodes
211A-C and compute nodes 212A-1. Compute nodes 212
provide the processing capacity of parallel system 200, and
are configured to execute applications written for parallel
processing. /O nodes 211 handle I/O operations on behalf of
compute nodes 212. Each I/O node 211 may include a pro-
cessor and interface hardware that handles 1/O operations for
a set of N compute nodes 212, the I/O node and its respective
set of N compute nodes are referred to as a Pset. In some
embodiments, each I/O node 211A-C may have an entropy
generation mechanism corresponding to the entropy genera-
tion mechanism 121A and 121B of FIG. 1, the entropy gen-
eration mechanism containing an entropy pool and entropy
distribution mechanism corresponding to those depicted in
FIG. 1. Compute core 201 contains M Psets 215A-C, each
including a single /O node 211 and N compute nodes 212, for
atotal of MxN compute nodes 212. The product MxN can be
very large. For example, in one implementation M=1024
(1K) and N=64, for a total of 64K compute nodes.

In general, application programming code and other data
input required by compute core 201 to execute user applica-
tions, as well as data output produced by the compute core
201, is communicated over functional network 205. The com-
pute nodes within a Pset 215 communicate with the corre-
sponding I/O node over a corresponding local I/O collective
network 213A-C. The I/O nodes, in turn, are connected to
functional network 205, over which they communicate with
1/0 devices attached to file servers 204, or with other system
components. Thus, the local I/O collective networks 213 may
be viewed logically as extensions of functional network 205,
and like functional network 205 are used for data 1/O,
although they are physically separated from functional net-
work 205. One example of the collective network is a tree
network.

Control subsystem 202 directs the operation of the com-
pute nodes 212 in compute core 201. Control subsystem 202
is a computer that includes a processor (or processors) 221,
internal memory 222, and local storage 225. An attached
console 207 may be used by a system administrator or similar
person. Control subsystem 202 may also include an internal
database which maintains state information for the compute
nodes in core 201, and an application which may be config-
ured to, among other things, control the allocation of hard-
ware in compute core 201, direct the loading of data on
compute nodes 211, and perform diagnostic and maintenance
functions.

Control subsystem 202 communicates control and state
information with the nodes of compute core 201 over control
system network 206. Network 206 is coupled to a set of
hardware controllers 208A-C. Each hardware controller
communicates with the nodes of a respective Pset 215 over a
corresponding local hardware control network 214A-C. The
hardware controllers 208 and local hardware control net-
works 214 are logically an extension of control system net-
work 206, although physically separate.

US 9,092,285 B2

7

In addition to control subsystem 202, front-end nodes 203
provide computer systems used to perform auxiliary func-
tions which, for efficiency or otherwise, are best performed
outside compute core 201. Functions which involve substan-
tial I/O operations are generally performed in the front-end
nodes. For example, interactive data input, application code
editing, or other user interface functions are generally
handled by front-end nodes 203, as is application code com-
pilation. Front-end nodes 203 are connected to functional
network 205 and may communicate with file servers 204.

In one embodiment, the computer system 200 determines,
from among a plurality of class route identifiers for each of
the compute nodes along a communications path from a
source compute node to a target compute node in the network,
a class route identifier available for all of the compute nodes
along the communications path. The computer system 200
configures network hardware of each compute node along the
communications path with routing instructions in depen-
dence upon the available class route identifier and a network
topology for the network. The routing instructions for each
compute node associate the available class route identifier
with the network links between that compute node and each
compute node adjacent to that compute node along the com-
munications path. The source compute node transmits a net-
work packet to the target compute node along the communi-
cations path, which includes encoding the available class
route identifier in a network packet. The network hardware of
each compute node along the communications path routes the
network packet to the target compute node in dependence
upon the routing instructions for the network hardware of
each compute node and the available class route identifier
encoded in the network packet. As used herein, the source
compute node is a compute node attempting to transmit a
network packet, while the target compute node is a compute
node intended as a final recipient of the network packet.

In one embodiment, a class route identifier is an identifier
that specifies a set of routing instructions for use by a compute
node in routing a particular network packet in the network.
When a compute node receives a network packet, the network
hardware of the compute node identifies the class route iden-
tifier from the header of the packet and then routes the packet
according to the routing instructions associated with that
particular class route identifier. Accordingly, by using differ-
ent class route identifiers, a compute node may route network
packets using different sets of routing instructions. The num-
ber of class route identifiers that each compute node is
capable of utilizing may be finite and may typically depend on
the number of bits allocated for storing the class route iden-
tifier. An “available” class route identifier is a class route
identifier that is not actively utilized by the network hardware
of'a compute node to route network packets. For example, a
compute node may be capable of utilizing sixteen class route
identifiers labeled 0-15 but only actively utilize class route
identifiers 0 and 1. To deactivate the remaining class route
identifiers, the compute node may disassociate each of the
available class route identifiers with any routing instructions
or maintain a list of the available class route identifiers in
memory.

Routing instructions specify the manner in which a com-
pute node routes packets for a particular class route identifier.
Using different routing instructions for different class route
identifiers, a compute node may route different packets
according to different routing instructions. For example, for
one class route identifier, a compute node may route packets
specifying that class route identifier to a particular adjacent
compute node. For another class route identifier, the compute
node may route packets specifying that class route identifier

10

20

25

35

40

45

55

8

to different adjacent compute node. In such a manner, two
different routing configurations may exist among the same
compute nodes on the same physical network.

In one embodiment, compute nodes 212 are arranged logi-
cally in a three-dimensional torus, where each compute node
212 may be identified using an x, y and z coordinate. FIG. 3
is a conceptual illustration of a three-dimensional torus net-
work of system 200, according to one embodiment disclosed
herein. More specifically, FIG. 3 illustrates a 4x4x4 torus 301
of compute nodes, in which the interior nodes are omitted for
clarity. Although FIG. 2 shows a 4x4x4 torus having 64
nodes, it will be understood that the actual number of com-
pute nodes in a parallel computing system is typically much
larger. For example, a complete Blue Gene/L system includes
65,536 compute nodes. Each compute node 212 in torus 301
includes a set of six node-to-node communication links
302A-F which allows each compute nodes in torus 301 to
communicate with its six immediate neighbors, two nodes in
each of the x, y and z coordinate dimensions.

As used herein, the term “torus” includes any regular pat-
tern of nodes and inter-nodal data communications paths in
more than one dimension, such that each node has a defined
set of neighbors, and for any given node, it is possible to
determine the set of neighbors of that node. A “neighbor” of
a given node is any node which is linked to the given node by
a direct inter-nodal data communications path. That is, a path
which does not have to traverse another node. The compute
nodes may be linked in a three-dimensional torus 301, as
shown in FIG. 2, but may also be configured to have more or
fewer dimensions. Also, it is not necessarily the case that a
given node’s neighbors are the physically closest nodes to the
given node, although it is generally desirable to arrange the
nodes in such a manner, insofar as possible.

In one embodiment, the compute nodes in any one of the x,
y or z dimensions form a torus in that dimension because the
point-to-point communication links logically wrap around.
For example, this is represented in FIG. 3 by links 302D,
302E and 302F which wrap around from a last node in the x,
y and z dimensions to a first node. Thus, although node 303
appears to be at a “corner” of the torus, node-to-node links
302A-F link node 303 to nodes 302D, 302E and 302F, in the
X, y and z dimensions of torus 301.

FIG. 4 is a diagram of an /O node 211 of the system 200 of
FIG. 2, according to one embodiment. The I/O node 211 may
correspond to the /O nodes 110 and 111 of FIG. 1. As shown,
1/0 node 211 includes processor cores 401A and 401B, and
also includes memory 402 used by both processor cores 401;
an external control interface 403 which is coupled to local
hardware control network 214; an external data communica-
tions interface 404 which is coupled to the corresponding
local I/O collective network 213, and the corresponding six
node-to-node links 302 of the torus network 301; and moni-
toring and control logic 405 which receives and responds to
control commands received through external control inter-
face 403. Monitoring and control logic 405 may access pro-
cessor cores 401 and locations in memory 402 on behalf of
control subsystem 202 to read (or in some cases alter) the
operational state of I/O node 211. In one embodiment, each
1/O node 211 may be physically implemented as a single,
discrete integrated circuit chip.

As shown in FIG. 4, memory 402 stores an operating
system image 411, an application code image 412 and user
application data structures 413 as required. Some portion of
memory 402 may be allocated as a file cache 414, i.e., a cache
of data read from or to be written to an I/O file. Operating
system image 411 provides a copy of a simplified-function
operating system running on I/O node 211. Operating system

US 9,092,285 B2

9

image 411 may includes a minimal set of functions required
to support operation of the /O node 211. As shown, the
memory 402 also contains the entropy generation mechanism
402. In some embodiments, the entropy generation mecha-
nism is an equivalent of the entropy generation mechanisms
121A-B of FIG. 1. As discussed with reference to FIG. 1, the
entropy generation mechanism 402 is generally configured to
store entropy pool elements in an entropy pool, which may be
distributed to a random number generator residing in the
memory 402 by an entropy distribution mechanism. In some
embodiments, the entropy generation mechanism 412
extracts entropy pool elements from network packets sent by
the file server 204 to any one of the I/O nodes 211 of the
compute core 201. Any I/O node 211 in the compute core 201
may extract entropy pool elements from network packets sent
to different I/O nodes 211 from the file system.

FIG. 5 is a flow chart illustrating a method 500 of distrib-
uting entropy pool elements on a massively parallel comput-
ing system, according to one embodiment disclosed herein.
Generally, the method 500 describes techniques for distrib-
uting entropy pool elements collected at a file system to the
1/0 nodes of a parallel computing system. The entropy pool
elements are collected at the file system, inserted into network
packets at the file system, and transmitted to a destination I/O
node. While in transit to the destination node, the entropy
pool elements may be extracted by any of the plurality of I/O
nodes in the parallel computing system for storage in the
entropy pools of the I/O nodes. At step 510, entropy pool
elements are collected at the file system by the entropy col-
lection mechanism. The entropy collection mechanism may
collect entropy pool elements by the random nature of the
mechanical disk subsystem of the file system. For example,
when a file system access is made, a particular location on a
particular disk of the file system may be referenced. The
entropy collection mechanism may collect unique identifiers
for the disk and its sectors, cylinders, platters, and zones. In
some embodiments, these unique identifiers may be collected
as entropy pool elements. In some other embodiments, the
entropy collection mechanism may use these unique identi-
fiers as inputs into an entropy pool element generation algo-
rithm, which outputs entropy pool elements. Upon collecting
entropy pool elements, the entropy collection mechanism
may store the entropy pool elements in an entropy pool.

At step 520, the entropy collection mechanism may insert
an entropy pool element into a network packet which will be
sent from the file system to an I/O node. The network packet
may be based on a protocol, including, but not limited to
Ethernet and small computer system interface (SCSI) proto-
cols. The entropy collection mechanism may obtain the
entropy pool element from the entropy pool, or may insert the
entropy pool element into a network packet upon collecting
the entropy pool element at step 510. Inserting the entropy
pool element into a network packet will be described below in
greater detail with reference to FIG. 6. At step 530, the net-
work packet containing the entropy pool element is sent from
the file system to the /O node. At step 540, the entropy pool
element is extracted from the network packet by the entropy
generation mechanism of an I/O node. An /O node may
extract the entropy pool element even if it is not the destina-
tion of the network packet, so long as the network packet is
accessible by the I/O node. Generally, the parallel computing
system may be configured to specify a location for entropy
pool elements in a network packet, so the entropy generation
mechanisms of the [/O nodes will know which portion of the
network packet contains the entropy pool element such that it
may be extracted. At step 550, the extracted entropy pool
element is added to the entropy pool ofthe /O node. Once the

10

15

20

25

30

35

40

45

50

55

60

65

10

entropy pool element is in the entropy pool of the I/O node, it
may be sent to a random number generator to be used as input
in an algorithm for generating random numbers.

FIG. 6 is a flow chart illustrating a method 600 correspond-
ing to step 520 for inserting entropy pool elements into a
network packet, according to one embodiment disclosed
herein. When an entropy pool element is collected by the
entropy collection mechanism of a file server, the entropy
pool element may be added to the entropy pool of the entropy
collection mechanism. Alternatively, the entropy pool ele-
ment may be inserted into a network packet without first
being added to the entropy pool. Any algorithm may be used
to select an entropy pool element from the entropy pool to
insert into a network packet. For example, the newest or
oldest entropy pool element may be selected. An entropy pool
element may be randomly selected. If additional space exists
in the network packet, more than one entropy pool element
may be inserted into the network packet.

Although the steps of the method 600 are depicted as a flow
chart, one, several, or all of the steps of the method may be
used to insert entropy pool elements into a network packet or
network idle packet. The entropy pool elements may be added
to the network packets at any number of levels of the file
system. At the lowest level, the hardware network controllers,
or the device driver software operating the network control-
lers, may take entropy collected by the entropy collection
mechanism and add it to each (or some) of the network
packets sent by the file system. At a higher level, entropy pool
elements may be padded to messages used to implement the
file system itself, as each request for data requires a response
from the file system which may append entropy in the
response. At step 610, an entropy pool element is inserted into
network packet padding fields used for data alignment.
Because a network packet must conform to formatting stan-
dards, the packet fields may be padded with data to ensure that
the packet and its fields conform to the standards. Generally,
some fields have relevant data which does not occupy the
entire allocated size of the field, and the field may be padded
to meet the allocated size. Therefore, embodiments disclosed
herein may “pad” the network packet and its fields with
entropy pool elements, instead of padding the packet with
otherwise useless (and discarded) data. If several fields of the
network packet are to be padded, entropy pool elements may
be inserted into each of the fields. At step 620, the entropy
collection mechanism may insert entropy pool elements into
unused network packet fields. An unused field may a field
which would otherwise contain no data. The entropy collec-
tion mechanism may insert entropy pool elements into these
unused network packet fields such that the payload of the
network packet is more fully utilized. At step 630, the entropy
collection mechanism may append entropy pool elements to
the network packet at a specified location. The location may
be any predefined location of the network packet, including,
but not limited to, the end of the network packet. A system
standard may be implemented to ensure that the entropy
collection mechanism knows where to place the entropy pool
elements, and such that the entropy generation mechanisms
of'the I/O nodes will know where to extract the entropy pool
elements from.

Embodiments disclosed herein describe techniques of
transmitting entropy pool elements from a file system having
entropy pool elements to I/O (and compute) nodes which may
not have entropy pool elements. By adding the entropy pool
elements in network packets sent from the file system to the
1/0 nodes, the cost of sending the entropy pool elements is
almost zero. The cost is less than sending dedicated packets
exclusively containing entropy pool elements from the file

US 9,092,285 B2

11

system to the I/O nodes. By providing entropy pool elements
to the I/O nodes, a random number generator of the /O nodes
may have a higher entropy property, such that the random
number generator has an equal probability of outputting each
individual value of a set of predefined values that the random
number generator is configured to output.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
disclosure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

While the foregoing is directed to embodiments of the
present disclosure, other and further embodiments of the dis-
closure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A method to distribute entropy data to input/output
nodes in a parallel computing system obtained from a file
system, comprising:

responsive to receiving a file system request from an input/

output (I/O) node to perform a file system operation,
retrieving a first entropy pool element from the file sys-
tem, wherein the first entropy pool element comprises a
unique identifier of a disk in the file system; and

5

30

12

inserting, at the file system, the first entropy pool element
into a network packet sent to the requesting I/O node
from the file system responding to the file system
request.

2. The method of claim 1, wherein the the unique identifier
is of at least one of: (i) a sector of the disk, (i) a cylinder of the
disk, (iii) a platter of the disk, and (iv) a zone of the disk,
wherein inserting the first entropy pool element into a net-
work packet comprises at least one of: (i) storing the first
entropy pool element in an unused field; (ii) adding the first
entropy pool element to one or more fields used for data
alignment; and

(iii1) appending the first entropy pool element to the net-

work packet.

3. The method of claim 2, further comprising:

extracting, at a first /O node of the parallel computing

system, the first entropy pool element from the network
packet; and

storing the first entropy pool element in an entropy pool of

the first I/O node.

4. The method of claim 3, wherein the first entropy pool
element comprises an arbitrary length sequence of bits used
as input in a random number generator stored in a memory of
the 1/0 node in order to compute a random number.

5. The method of claim 4, wherein the first entropy pool
element is retrieved from an entropy pool of the file system.

6. The method of claim 5, wherein the first entropy pool
element is added to the entropy pool of the first I/O node to
improve the entropy property of the random number genera-
tor, wherein the random number generator is configured to
accept the first entropy pool element as input.

7. The method of claim 6, wherein the file system operation
comprises at least one of: (i) a read, and (ii) a write, the
method further comprising:

accepting the first entropy pool element as input by the

random number generator; and

generating a value by the random number generator, based

on the first entropy pool element.

#* #* #* #* #*

